

高性能电流模式 PWM 控制器

概述

ME8123 是一个高性能电流模式 PWM 控制器, 内置 650V/7A 功率 MOSFET。在 85V~265V 的宽电压范围内 提供高达 36W 的输出功率 (佩戴散热器可以达到 40W)。

ME8123 低至 5uA 的启动电流,以及在输出功率较小时自动进入绿色模式,从而实现了在 220V 输入电压时小于 100mW 的待机空耗。并且使进入 20KHz 以下的音频区的范围最小化,以保证在正常工作状态无异音。另外ME8123 集成频率抖动功能,可以有效简化 EMI 设计。

ME8123 拥有完善的保护功能,包括过流保护 (OCP),过载保护 (OLP),欠压锁定 (UVLO),过压保护 (OVP),过温保护 (OTP)等,以确保系统可靠的工作。

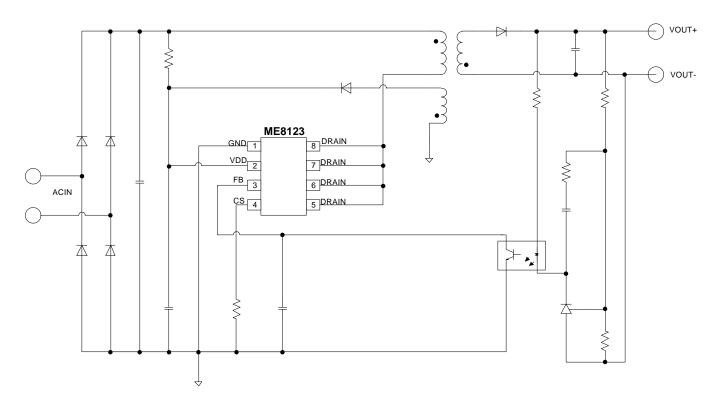
特点

- 超低启动电流
- 降噪功能
- 轻载进入绿色模式
- 频率抖动功能
- 过功率补偿
- 前沿消隐
- 斜坡补偿
- 完善的保护: OCP, OLP, UVLO, OVP, OTP

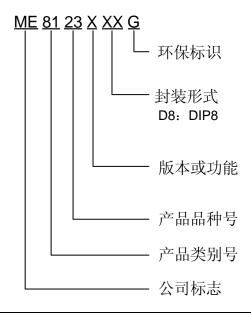
应用场合

- 适配器
- 机顶盒
- 开放式电源
- PD 快充

封装形式


• 8-pin DIP8

V01 Page 1 of 8

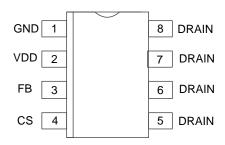

代理商:深圳市腾华泰电子有限公司 联系人:杨苏华 13823735130 QQ:110455796

典型应用图

选型指南

产品型号	产品说明		
ME8123AD8G	封装形式: DIP8		

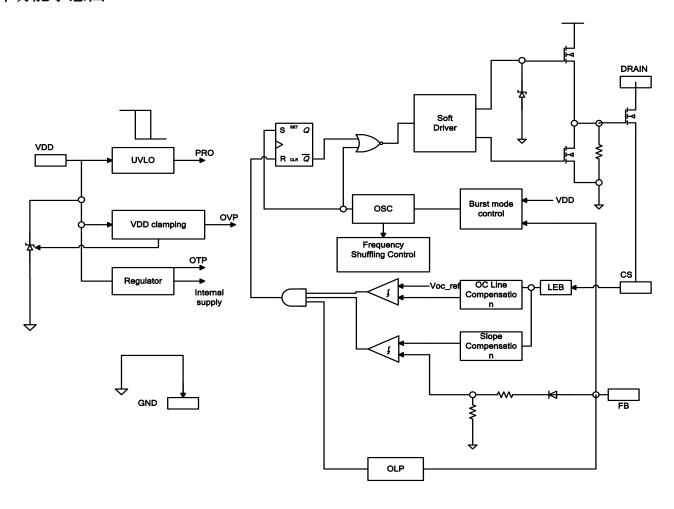
V01 Page 2 of 8


联系人:杨苏华

13823735130

QQ: 110455796

产品脚位图



DIP8

脚位功能说明

符号名	脚位名 DIP8	作用	说明
GND	1	接地脚	地
VDD	2	供电脚	电源
FB	3	输入脚	反馈
CS	4	输入脚	电流检测
DRAIN	5,6,7,8	输入脚	高压功率 MOS 的漏极

芯片功能示意图

Page 3 of 8 V01

代理商:深圳市腾华泰电子有限公司 联系人:杨苏华 QQ: 110455796 13823735130

极限参数

参数	极限值	单位
DRAIN 电压	650	V
VDD 电压	-0.3~30	V
VDD 电流	0~5	mA
FB、CS 电压	-0.3~7	V
封装热阻	90	°C/W
功耗	1.39	W
工作温度范围	-20∼85	°C
储存温度范围	- 55∼150	°C
结温范围	-40~150	°C
焊接温度和时间	+260(10秒)	°C

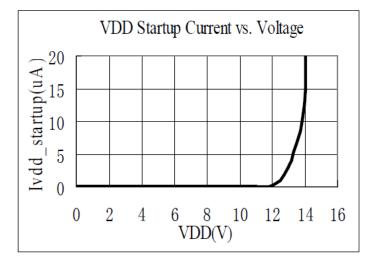
推荐工作条件

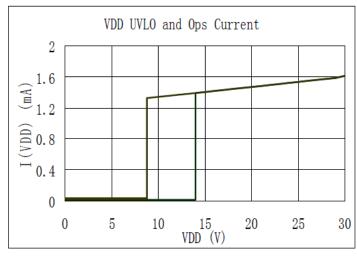
参数	极限值	单位
电源电压	10~30	V
工作温度	-20~85	°C

电气参数 (除非特殊说明,测试条件为: T_A = 25℃, VDD=16V)

符号	参数	条件	最小值	典型值	最大值	单位
电源(VDD)						
I _{Startup}	启动电流	VDD= UVLO _{OFF} -1V,流入 VDD 的电流	-	5	20	μΑ
I _{Operation}	工作电流	V _{FB} =3V	-	1	2	mA
UVLO _{ON}	VDD 欠压锁定电压		8	9	10	V
UVLO _{OFF}	VDD 欠压锁定解锁电压		14	15	16	V
VDD_Clamp	VDD 嵌位电压	$I_{VDD} = 5 \text{ mA}$	32	35	37	V
OVP _{ON}	VDD 过压保护电压		28	30	32	V
OVP _{OFF}	VDD 过压保护释放电压		24	26	28	V
OTP			145	155	165	°C
		反馈 (FB)				
AV _{CS}	PWM 输入增益 ΔV _{FB} /ΔV _{CS}		-	2	-	V/V
Maximum duty cycle	最大占空比	VDD=16V, $V_{FB}=3V$, $V_{CS}=0V$	75	80	85	%
V_{FB_Open}	FB 开路电压		4.5	5	5.5	V
I _{FB_Short}	FB 短路电流	FB 对 GND 短路时流出 FB 的电流	-	0.4	-	mA
V _{REF_GREEN}	进入绿色模式时的 FB 电压		-	1.8	-	V
V _{REF_BURST_H}	解除突发模式时的 FB 电压		-	1.1	-	V
V _{REF_BURST_L}	进入突发模式时的 FB 电压		-	1	-	V

V01 Page 4 of 8


代理商:深圳市腾华泰电子有限公司 联系人:杨苏华 13823735130 QQ:110455796



ME8123

V _{TH_PL}	过功率保护 FB 电压		_	3.5	-	V
T _{D_PL}	过功率保护反跳时间		30	38	46	mS
	电流检测 (Sense)					
T_blanking	前沿消隐时间		-	220	-	nS
T _{D_OC}	检测到控制的延迟时间		-	120	-	nS
V _{TH_OC}	最大电流限制比较电压	FB=3.3V	0.7	0.75	0.8	V
		振荡器				
Fosc	工作频率	VDD=16V,FB=3V,CS=0V	60	67.5	75	KHz
Δf_Temp 频	频率随温度的变化	VDD = 16V,		5		%
		TA -20°C to 140 °C				
Δf_VDD	频率随 VDD 的变化	VDD = 9-25V,		5		%
∆f_OSC	频率抖动幅度	-		±6	-	%
F_shuffling	频率抖动周期	- 3:		32	-	Hz
F_Burst	突发模式基础频率		-	25	-	KHz
高压功率 MOSFET (DRAIN)						
BVdss	源漏耐压	Vgs=0	650	-	-	V
Ron	源漏之间导通电阻	V _{GS} =10V, Id=3.5A	-	-	1.4	Ω
I _D	标称工作电流		-	7	-	Α

典型性能参数

V01 Page 5 of 8 代理商:深圳市腾华泰电子有限公司 联系人:杨苏华 13823735130 QQ:110455796

功能描述

ME8123 是一个高性能电流模式 PWM 控制器,内置 650V/7A 功率 MOSFET。用在小于 50W 的离线式反激拓扑的开关电源上的控制芯片。

启动过程

启动过程中,因为芯片设计的超低启动电流,VDD通过一大阻值电阻充电,使损耗降到最低。当 VDD 升到 15V 时,芯片内部模块逻辑开始工作,驱动高压 MOS 开关。正常工作状态,辅助绕组上的电压会随着输出电压的升高而升高,到一定程度后开始给芯片供电。如果 VDD电压低于 9V,芯片将自动关闭,重新进入启动过程。

频率抖动

ME8123 集成频率抖动功能,正常工作状态,芯片工作频率围绕中心频率在±4%的范围内随机变化,有效改善系统的 EMI 特性,简化系统的设计。

电流检测以及前沿消隐

ME8123 进行逐周期电流检测,开关电流经过一个检测电阻被 CS 脚检测到,到达一定阈值时控制开关关闭。为避免功率管开启时产生的尖峰造成误触发,有必要做一个前沿消隐时间,这里是 220nS。在这个时间里,开关不能被关闭。

绿色模式和突发模式

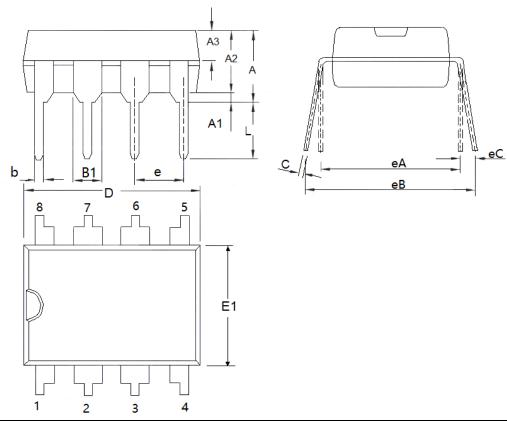
在空载或者轻载时,大部分能量损耗在功率开关管, 而这损耗是和开关频率成正比的,因此低的开关频率可以 有效降低损耗。

ME8123设计开关频率在空载和轻载时调整,在空载和轻载时 FB 电压会降低,降到 1.8V 时进入绿色模式,芯片频率随着 FB 电压降低而降低,当 FB 电压进一步降低到 1V 时,芯片进入突发模式,及芯片驱动关断,直到 FB 升到 1.1V 时恢复开关。因此可以有效降低系统待机功耗。另外绿色模式的最低频率在 22KHz,以保证在任何负载情况下没有音频噪声。

保护功能

ME8123 拥有完善的保护功能,以确保系统可靠的工作。包括逐周期过流保护(OCP),过载保护(OLP),VDD 欠压锁定(UVLO),VDD 过压保护(OVP),过温保护(OTP)等。

当 ME8123 工作在超负载状态时,输出电压无法到达额定电压,FB 电压超过内部设置的功率限制阈值电压达到 38mS 左右时控制电路关闭开关管,辅助绕组无法继续供电,VDD 开始下降,直到降低到 9V,芯片重新启动。


V01 Page 6 of 8

代理商:深圳市腾华泰电子有限公司 联系人:杨苏华 13823735130 QQ:110455796

封装信息

封装类型: DIP8

会粉	尺寸 (mm)		尺寸(Inch)		
参数	最小值	最大值	最小值	最大值	
А	3.6	4.31	0.1417	0.1697	
A1	0.5(T	YP)	0.0197	(TYP)	
A2	3.2	3.6	0.1260	0.1417	
А3	1.47	1.65	0.0579	0.0650	
b	0.38	0.57	0.0150	0.0224	
B1	1.52(TYP)		0.0598(TYP)		
С	0.2	0.36	0.0079	0.0142	
D	9	9.4	0.3543	0.3700	
E1	6.1	6.6	0.2402	0.2598	
e A	7.62(TYP)		0.3(T	YP)	
e B	7.62	9.3	0.3000	0.3661	
е	2.54(TYP)		0.1(T	YP)	
e C	0	0.84	0.0000	0.0331	
L	3	3.6	0.1181	0.1417	

Page 7 of 8 V01 联系人:杨苏华 QQ: 110455796 13823735130

代理商:深圳市腾华泰电子有限公司

- 本资料内容, 随产品的改进, 可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、 瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使 用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。

V01 Page 8 of 8 代理商:深圳市腾华泰电子有限公司 联系人:杨苏华 13823735130 QQ:110455796